Drug Loaded Spacers for LDR Prostate Brachytherapy

Andrew Z. Wang MD

A. Kenneth Pye Professorship in Cancer Research Vice Chair of Translational Research and Commercialization Department of Radiation Oncology & Harold C. Simmons Comprehensive Cancer Center

Fellow of AAAS, AIMBE and member of ASCI

Disclosure

I have the following financial relationships to disclose:

- Stockholder/Co-founder in: Capio Biosciences, Archimmune Therapeutics, Nanobarriers and Immune-X
- Research funding from Archimmune Therapeutics
- Consulting: Archimmune and Johnson and Johnson

- and -

I will not discuss off label use and/or investigational use in my presentation.

Background

- LDR brachytherapy is an effective treatment for prostate cancer
- Not sufficient as single-treatment for high risk disease
- Main toxicity is urinary retention
- Utilization has decreased due to SBRT and EBRT technology advances
- Advantages of brachytherapy: normal tissue sparing, logistics etc remain

Brachytherapy 2022 216-11DOI: (10.1016/j.brachy.2021.07.004)

Background

- "Systemic agents" such as ADT, enza/apalutamide, docetaxel can improve treatment outcome in PCa
- Steroids can be used to reduce swelling associated with brachytherapy
- But these systemic agents have significant toxicity/side effects
- Spacers in LDR (not to be confused with SpaceOAR) can be used for drug delivery

Considerations of local drug delivery

- Material: Biocompatible/biodegradable with ability to delivery multiple types of therapeutics
- Shape: Controlled release over long periods of time
- Formulation/manufacturing: easy to engineer

Continuous liquid interface production (CLIP) 3D Printing

- Fast
- Layerless
- High resolution

Spacer design

C.T. Hagan, C. Bloomquist, I. Kim et al. Acta Biomaterialia 148 (2022) 163–170

Drug release and diffusion

C.T. Hagan, C. Bloomquist, I. Kim et al. Acta Biomaterialia 148 (2022) 163–170

Drug-loaded spacer efficacy

C.T. Hagan, C. Bloomquist, I. Kim et al. Acta Biomaterialia 148 (2022) 163–170

23

Survival

Summary

- Spacers in brachytherapy can be loaded with therapeutics
- Drug release can be controlled through spacer design
- Drugs that are effective against PCa, such as docetaxel, can be encapsulated within spacers
- Addition of these therapeutics can improve efficacy
- Future directions:
 - Clinical translation
 - ? Drug loaded spacers as solo treatment

Acknowledgements

National Institutes of Health

CAPI

@andyzwang Andrew.wang2@utsouthwestern.edu

Wang lab is hiring!!

